Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among O-linked oligosaccharides on an ovarian cystadenoma glycoprotein

Abstract
E-selectin is the inducible adhesion protein on the surface of endothelial cells which has a crucial role in the initial stages of recruitment of leucocytes to sites of inflammation. In addition, it is almost certainly involved in tumor cell adhesion and metastasis. This report is concerned with identification of a new class of oligosaccharide ligand--sulfate-containing--for the human E-selectin molecule from among oligosaccharides on an ovarian cystadenoma glycoprotein. This has been achieved by application of the neoglycolipid technology to oligosaccharides released from the glycoprotein by mild alkaline beta-elimination. Oligosaccharides were conjugated to lipid, resolved by thin-layer chromatography, and tested for binding by Chinese hamster ovary cells which had been transfected to express the full-length E-selectin molecule. Several components with strong E-selectin binding activity were revealed among acidic oligosaccharides. The smallest among these was identified by liquid secondary ion mass spectrometric analysis of the neoglycolipid, in conjunction with methylation analysis of the purified oligosaccharide preparation as an equimolar mixture of the Le(a)- and Le(x)/SSEA-1-type fucotetrasaccharides sulfated at position 3 of outer galactose: [formula: see text] To our knowledge this is the first report of a sulfofucooligosaccharide ligand for E-selectin. The binding activity is substantially greater than those of lipid-linked Le(a) and Le(x)/SSEA-1 sequences and is at least equal to that of the 3'-sialyl-Le(x)/SSEA-1 glycolipid analogue.