Ballistic transport through chaotic cavities: Parametric correlations and the weak localization peak in a Brownian-motion model
- 15 March 1995
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 51 (12) , 7734-7738
- https://doi.org/10.1103/physrevb.51.7734
Abstract
A Brownian-motion model is devised on the manifold of S matrices, and applied to the calculation of conductance-conductance correlations and of the weak localization peak. The model predicts that (i) the correlation function in B has the same shape and width as the weak localization peak; (ii) the functions behave as ∝1-O(), thus excluding a linear line shape; and (iii) their width increases as the square root of the number of channels in the leads. Some of these predictions do not agree with experiment and with other calculations.
Keywords
All Related Versions
This publication has 24 references indexed in Scilit:
- Universal Quantum Signatures of Chaos in Ballistic TransportEurophysics Letters, 1994
- Mesoscopic transport through chaotic cavities: A randomS-matrix theory approachPhysical Review Letters, 1994
- Magnetotransport in a chaotic scattering cavity with tunable electron densitySurface Science, 1994
- Random-matrix theory of mesoscopic fluctuations in conductors and superconductorsPhysical Review B, 1993
- Conductance fluctuations and chaotic scattering in ballistic microstructuresPhysical Review Letters, 1992
- Statistical scattering theory, the supersymmetry method and universal conductance fluctuationsAnnals of Physics, 1990
- Wave propagation through disordered media and universal conductance fluctuationsPhysical Review Letters, 1990
- Macroscopic approach to universal conductance fluctuations in disordered metalsPhysical Review Letters, 1988
- Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic fieldPhysical Review B, 1987
- Aharonov-Bohm effect in normal metal quantum coherence and transportAdvances in Physics, 1986