Wave-number spectrum of electrocorticographic signals

Abstract
A physiologically based continuum model of corticothalamic electrodynamics is generalized and used to derive the theoretical form of the electrocorticographic (ECoG) wave-number spectrum. A one-dimensional projection of the spectrum is derived, as is the azimuthally averaged two-dimensional spectrum for isotropic and anisotropic cortices. The predicted spectra are found to consist of a low-k plateau followed by three regions of power-law decrease, which result from filtering of the electrical activity through physical structures at different scales in the cortex. The magnitude of the maximum theoretical power-law exponent is larger for the two-dimensional (2D) spectrum than for its 1D counterpart. The predicted spectra agree well with experimental data obtained from 1D and 2D recording arrays on the cortical surface, enabling the structures in the brain that are important in determining spatial cortical dynamics to be identified. The cortical dispersion relation predicted by our model is also investigated, providing insight into the relationships between temporal and spatial brain dynamics.