Genetics of neuronal migration in the cerebral cortex
- 1 January 2000
- journal article
- review article
- Published by Wiley in Mental Retardation and Developmental Disabilities Research Reviews
Abstract
The development of the cerebral cortex requires large-scale movement of neurons from areas of proliferation to areas of differentiation and adult function in the cortex proper, and the patterns of this neuronal migration are surprisingly complex. The migration of neurons is affected by several naturally occurring genetic defects in humans and mice; identification of the genes responsible for some of these conditions has recently yielded new insights into the mechanisms that regulate migration. Other key genes have been identified via the creation of induced mutations that can also cause dramatic disorders of neuronal migration. However, our understanding of the physiological and biochemical links between these genes is still relatively spotty. A number of molecules have also been studied in mice (Reelin, mDab1, and the VLDL and ApoE2 receptors) that appear to represent part of a coherent signaling pathway that regulates migration, because multiple genes cause an indistinguishable phenotype when mutated. On the other hand, two human genes that cause lissencephaly (LIS1, DCX) encode proteins that have recently been implicated as regulators or microtubule dynamics. This article reviews some of the mutant phenotypes in light of the mechanisms of neuronal migration. MRDD Research Reviews 6:34-40, 2000.Keywords
This publication has 115 references indexed in Scilit:
- Interaction of Cytosolic Adaptor Proteins with Neuronal Apolipoprotein E Receptors and the Amyloid Precursor ProteinJournal of Biological Chemistry, 1998
- β1 integrin deficiency impairs migration and differentiation of mouse embryonic stem cell derived neuronsNeuroscience Letters, 1998
- Point Mutations and an Intragenic Deletion in LIS1, the Lissencephaly Causative Gene in Isolated Lissencephaly Sequence and Miller-Dieker SyndromeHuman Molecular Genetics, 1997
- The reeler gene encodes a protein with an EGF–like motif expressed by pioneer neuronsNature Genetics, 1995
- A protein related to extracellular matrix proteins deleted in the mouse mutant reelerNature, 1995
- Involvement of Subplate Neurons in the Formation of Ocular Dominance ColumnsScience, 1992
- Clonally Related Cortical Cells Show Several Migration PatternsScience, 1988
- Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microculturesThe Journal of cell biology, 1988
- Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: A golgi-EM analysisDevelopmental Brain Research, 1982
- Neocortical histogenesis in normal and reeler mice: A developmental study based upon [3H]thymidine autoradiographyDevelopmental Brain Research, 1982