Magnetoacoustic Effect in Mercury

Abstract
Geometric resonances in the ultrasonic attenuations have been observed in high-purity mercury single crystals with longitudinal sound waves propagated along five crystallographic directions at frequencies up to 165 MHz. Of the five, only data for the (11¯0), (110), and (112¯) directions are reported. The dominant resonance branches have been assigned to calipers of the second-band electron-lens surface, with three major symmetry calipers being obtained. The remainder of the resonance branches have been assigned to orbits on the first-band hole surface. Various breakthrough dimensions of the hole surface were determined from these orbits. The pseudopotential coefficients corresponding to the planes bounding the first Brillouin zone in mercury have been estimated by comparing the geometric resonance data with the results of a fourpseudowave calculation neglecting spin-orbit coupling.

This publication has 12 references indexed in Scilit: