• 9 January 1998
Abstract
An effective model for the spacetime foam is constructed in terms of nonlocal interactions in a classical background. In the weak-coupling approximation, the evolution of the low-energy density matrix is determined by a master equation that predicts loss of quantum coherence. Moreover, spacetime foam can be described by a quantum thermal field that, apart from inducing loss of coherence, gives rise to effects such as gravitational Lamb and Stark shifts as well as quantum damping in the evolution of the low-energy observables.

This publication has 0 references indexed in Scilit: