Abstract
Network realzability theory provides the basis for a unified approach to the stability of a polynomial or a family of polynomials. In this paper conditions are given, in terms of certain decompositions of a given polynomial, that are necessary and sufficient for the given polynomial to be Hurwitz. These conditions facilitate the construction of stability domains for a family of polynomials through the use of linear inequalities. This approach provides a simple interpretation of recent results for polynomials with real coefficients and also leads to the formulation of corresponding results for the case of polynomials with complex coefficients.

This publication has 2 references indexed in Scilit: