Control of magnetization dynamics in Ni/sub 81/Fe/sub 19/ thin films through the use of rare-earth dopants

Abstract
We show that the magnetization dynamics of soft ferromagnetic thin films can be tuned using rare-earth (RE) dopants. Low concentrations (2 to 10%) of Tb in 50 nm Ni/sub 81/Fe/sub 19/ films are found to increase the Gilbert magnetic damping parameter /spl alpha/ over two orders of magnitude without great effect on easy axis coercivity or saturation magnetization. Comparison with Gd dopants indicates that the orbital character of the Tb moment is important for transferring magnetic energy to the lattice. Structural transformations from the crystalline to the amorphous state, observed over the first 2%-10% of RE doping, may play a contributing but not sufficient role in damping in these films. The approach demonstrated here shows promise for adjusting the dynamical response, from underdamped to critically damped, in thin film materials for magnetic devices.