Bifurcations and transitions in the quasiperiodically driven logistic map
Preprint
- 8 May 2001
Abstract
We discuss several bifurcation phenomena that occur in the quasiperiodically driven logistic map. This system can have strange nonchaotic attractors (SNAs) in addition to chaotic and regular attractors; on SNAs the dynamics is aperiodic, but the largest Lyapunov exponent is nonpositive. There are a number of different transitions that occur here, from periodic attractors to SNAs, from SNAs to chaotic attractors, etc. We describe some of these transitions by examining the behavior of the largest Lyapunov exponent, distributions of finite time Lyapunov exponents and the invariant densities in the phase space.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: