Global Interannual Variations in Sea Surface Temperature and Land Surface Vegetation, Air Temperature, and Precipitation

Abstract
Anomalies in global vegetation greenness, SST, land surface air temperature, and precipitation exhibit linked, low-frequency interannual variations. These interannual variations were detected and analyzed for 1982–90 with a multivariate spectral method. The two most dominant signals for 1982–90 had periods of about 2.6 and 3.4 yr. Signals centered at 2.6 years per cycle corresponded to variations in the El Niño–Southern Oscillation index and explained about 28% of the variance in anomalies of SST, land surface air temperature, precipitation, and vegetation; these signals were most pronounced in 1) SST anomalies in the eastern equatorial Pacific Ocean, 2) land surface vegetation and precipitation anomalies in tropical and subtropical regions, and 3) land surface vegetation, precipitation, and temperature anomalies in North America. Signals at 3.4 years per cycle corresponded to variations in the North Atlantic oscillation index and explained 8.6% of the variance in the combined datasets; their occ... Abstract Anomalies in global vegetation greenness, SST, land surface air temperature, and precipitation exhibit linked, low-frequency interannual variations. These interannual variations were detected and analyzed for 1982–90 with a multivariate spectral method. The two most dominant signals for 1982–90 had periods of about 2.6 and 3.4 yr. Signals centered at 2.6 years per cycle corresponded to variations in the El Niño–Southern Oscillation index and explained about 28% of the variance in anomalies of SST, land surface air temperature, precipitation, and vegetation; these signals were most pronounced in 1) SST anomalies in the eastern equatorial Pacific Ocean, 2) land surface vegetation and precipitation anomalies in tropical and subtropical regions, and 3) land surface vegetation, precipitation, and temperature anomalies in North America. Signals at 3.4 years per cycle corresponded to variations in the North Atlantic oscillation index and explained 8.6% of the variance in the combined datasets; their occ...