Natural Deduction as Higher-Order Resolution
Preprint
- 31 October 2000
Abstract
An interactive theorem prover, Isabelle, is under development. In LCF, each inference rule is represented by one function for forwards proof and another (a tactic) for backwards proof. In Isabelle, each inference rule is represented by a Horn clause. Resolution gives both forwards and backwards proof, supporting a large class of logics. Isabelle has been used to prove theorems in Martin-L\"of's Constructive Type Theory. Quantifiers pose several difficulties: substitution, bound variables, Skolemization. Isabelle's representation of logical syntax is the typed lambda-calculus, requiring higher- order unification. It may have potential for logic programming. Depth-first subgoaling along inference rules constitutes a higher-order Prolog.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: