Three-dimensional microwave tomography. Theory and computer experiments in scalar approximation

Abstract
The results of computer simulated experiments in three-dimensional microwave tomography in scalar approximation are presented. The gradient method is employed to solve three-dimensional high-contrast microwave tomographic problems. A computer model for full-scale three-dimensional imaging has been created. Three-dimensional tomographic images of mathematical models of the human torso were obtained. Significant differences between two-dimensional and three-dimensional cases are emphasized. Some illumination schemes which can be applied in the three-dimensional case are discussed. A dependence of image quality on the number of vertically placed transmitters has been demonstrated. The computer simulation showed that three-dimensional full-scale human torso dielectrical properties images can be produced with acceptable computational time.