Stochastic time-frequency dictionaries for matching pursuit

Abstract
Analyzing large amounts of sleep electroencephalogram (EEG) data by means of the matching pursuit (MP) algorithm, we encountered a statistical bias of the decomposition, resulting from the structure of the applied dictionary. As a solution, we propose stochastic dictionaries, where the parameters of the dictionary's waveforms are randomized before each decomposition. The MP algorithm was modified for this purpose and tuned for maximum time-frequency resolution. Examples of applications of the new method include parameterization of EEG structures and time-frequency representation of signals with changing frequency.

This publication has 3 references indexed in Scilit: