Practical Stability and Finite-Time Stability of Discontinuous Systems
- 1 March 1972
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Circuit Theory
- Vol. 19 (2) , 123-129
- https://doi.org/10.1109/tct.1972.1083426
Abstract
The trajectory bounds of discontinuous systems are treated within a stability framework. In doing so, stability is defined in terms of prespecified subsets of the state space over an infinite time interval (practical stability) and over a finite time interval (finite-time stability). The discontinuous systems considered are those which are described by ordinary discontinuous differential equations which may be autonomous or nonautonomous, linear or nonlinear. In all cases it is assumed that the differential equation possesses solutions in the sense of Filippov. The results obtained yield sufficient conditions for practical stability and finite-time stability. In order to demonstrate application of the methods advanced, specific examples are considered.Keywords
This publication has 4 references indexed in Scilit:
- Quantitative analysis of simple and interconnected systems: Stability, boundedness, and trajectory behaviorIEEE Transactions on Circuit Theory, 1970
- Finite time stability under perturbing forces and on product spacesIEEE Transactions on Automatic Control, 1967
- ON THE STABILITY OF SYSTEMS DEFINED OVER A FINITE TIME INTERVALProceedings of the National Academy of Sciences, 1965
- Über stückweise lineare Differentialgleichungen, die bei Regelungsproblemen auftreten IIArchiv der Mathematik, 1956