Crystal Structure and Carbohydrate Analysis of Nipah Virus Attachment Glycoprotein: a Template for Antiviral and Vaccine Design
- 1 December 2008
- journal article
- research article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 82 (23) , 11628-11636
- https://doi.org/10.1128/jvi.01344-08
Abstract
Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we present the structural analysis of the protein and carbohydrate components of the unbound viral attachment glycoprotein of NiV glycoprotein (NiV-G) at a 2.2-angstrom resolution. Comparison with its ephrin-B2-bound form reveals that conformational changes within the envelope glycoprotein are required to achieve viral attachment. Structural differences are particularly pronounced in the 579-590 loop, a major component of the ephrin binding surface. In addition, the 236-245 loop is rather disordered in the unbound structure. We extend our structural characterization of NiV-G with mass spectrometric analysis of the carbohydrate moieties. We demonstrate that NiV-G is largely devoid of the oligomannose-type glycans that in viruses such as human immunodeficiency virus type 1 and Ebola virus influence viral tropism and the host immune response. Nevertheless, we find putative ligands for the endothelial cell lectin, LSECtin. Finally, by mapping structural conservation and glycosylation site positions from other members of the paramyxovirus family, we suggest the molecular surface involved in oligomerization. These results suggest possible pathways of virus-host interaction and strategies for the optimization of recombinant vaccines.Keywords
This publication has 62 references indexed in Scilit:
- Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2Nature Structural & Molecular Biology, 2008
- Functional studies of host-specific ephrin-B ligands as Henipavirus receptorsVirology, 2008
- Glycoprotein Structural Genomics: Solving the Glycosylation ProblemStructure, 2007
- A time- and cost-efficient system for high-level protein production in mammalian cellsActa Crystallographica Section D-Biological Crystallography, 2006
- Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virusProceedings of the National Academy of Sciences, 2005
- Receptor Binding, Fusion Inhibition, and Induction of Cross-Reactive Neutralizing Antibodies by a Soluble G Glycoprotein ofHendra VirusJournal of Virology, 2005
- The Glycosylation of Human Serum IgD and IgE and the Accessibility of Identified Oligomannose Structures for Interaction with Mannan-Binding LectinThe Journal of Immunology, 2004
- Antibody Domain Exchange Is an Immunological Solution to Carbohydrate Cluster RecognitionScience, 2003
- Cloning, Expression, and Crystallization of the Fusion Protein of Newcastle Disease VirusVirology, 2001
- NEUTRALIZING ANTIVIRAL B CELL RESPONSESAnnual Review of Immunology, 1997