Nonlinear Finite Element Formulation for the Large Displacement Analysis of Plates
- 1 September 1990
- journal article
- Published by ASME International in Journal of Applied Mechanics
- Vol. 57 (3) , 707-718
- https://doi.org/10.1115/1.2897081
Abstract
In this investigation a nonlinear total Lagrangian finite element formulation is developed for the dynamic analysis of plates that undergo large rigid body displacements. In this formulation shape functions are required to include rigid body modes that describe only large translational displacements. This does not represent any limitation on the technique presented in this study, since most of commonly used shape functions satisfy this requirement. For each finite plate element an intermediate element coordinate system, whose axes are initially parallel to the axes of the element coordinate system, is introduced. This intermediate element coordinate system, which has an origin which is rigidly attached to the origin of the deformable body, is used for the convenience of describing the configuration of the element with respect to the deformable body coordinate system in the undeformed state. The nonlinear dynamic equations developed in this investigation for the large rigid body displacement and small elastic deformation analysis of the rectangular plates are expressed in terms of a unique set of time invariant element matrices that depend on the assumed displacement field. The invariants of motion of the deformable body discretized using the plate elements are obtained by assembling the invariants of its elements using a standard finite element procedure.Keywords
This publication has 0 references indexed in Scilit: