The generalized Morse oscillator in the SO(4,2) dynamical group scheme

Abstract
A family of the Morse oscillators with certain quantized coupling constants are described as composite objects in the framework of the SO(4,2) dynamical group scheme. Although a single Morse oscillator can be solved by the subgroup SO(2,1) of SO(4,2) this SO(2,1) is not the spectrum generating group], the set of all energy levels is given by the representation of another particular one-parameter subgroup of SO(4,2), which is the dynamical group of a single Morse oscillator. The continuous spectra of this oscillator and other variations of the Morse potential are also discussed by making an analytic continuation from the Morse potential well to the Morse barrier.

This publication has 13 references indexed in Scilit: