Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria of Candida utilis NCYC 321

Abstract
With Candida utilis cells that had been removed directly from a 61 chemostat culture, in steady state, well-coupled mitochondria generally could be isolated. This required a modified snail-gut enzyme procedure that allowed the total processing time to be decreased to 3 h, or less. Examination of these mitochondria in an oxygraph showed the presence of 3 sites of energy conservation when the cells were grown at various dilution rates between 0.1 and 0.45 h-1 in environments that were, successively, glucose-, ammonia-, magnesium-, phosphate- and sulphate-limited. Potassium-limited cells also apparently possessed 3 sites of oxidative phosphorylation when growing at dilution rates greater than 0.2 h-1, but only 2 sites when growing at lower dilution rates. Analysis of cytochrome spectra obtained with these intact mitochondria revealed large quantitative (but not qualitative) differences, depending on the environmental conditions under which the yeast had been cultured. In particular, comparison of the ratio of cytochrome b to cytochrome a showed a pattern of change with dilution rate in mitochondria from potassium-limited cells that was distinctly different from those evident in mitochondria from cells that had been limited in their growth by the availability of other nutrients.