In vitro effects of substance P on neonatal rat sympathetic preganglionic neurones.
- 1 May 1988
- journal article
- research article
- Published by Wiley in The Journal of Physiology
- Vol. 399 (1) , 321-333
- https://doi.org/10.1113/jphysiol.1988.sp017083
Abstract
1. Intracellular recordings were made from antidromically identified sympathetic preganglionic neurones (SPNs) in thin transverse neonatal rat thoracolumbar spinal cord slices. 2. Applied either by pressure ejection or superfusion, substance P (SP) caused a slow, monophasic depolarization in 60% of sympathetic preganglionic neurones; a biphasic response consisting of an initial hyperpolarization followed by a depolarization was observed in a few neurones. In addition, SP induced the occurrence of repetitive inhibitory postsynaptic potentials (IPSPs) in about 20% SPNs. 3. Low‐Ca2+ or tetrodotoxin (TTX)‐containing Krebs solution abolished the hyperpolarizing phase of the biphasic response and the small IPSPs, thereby augmenting the depolarizing response of SP. 4. SP‐induced depolarizations were often associated with a moderate increase in membrane resistance. Generally, the response was made smaller on hyperpolarization and reversed at the membrane potential between ‐90 and ‐100 mV. These findings suggest that a reduction of membrane K+ conductance may underlie the depolarizing action of SP. 5. Subthreshold fast, excitatory postsynaptic potentials (EPSPs) evoked by stimulation of dorsal rootlets were consistently augmented during SP‐induced depolarization, leading to cell discharge. 6. Focal stimulations elicited, in addition to a fast EPSP, a slow EPSP in about 40% of SPNs. The slow EPSP was often associated with an increased membrane resistance and became smaller on hyperpolarization. 7. In 15% of SPNs that generated a slow EPSP, the latter was reversibly abolished during SP‐induced depolarization; the blockade persisted when the membrane potential was restored to the resting level by hyperpolarizing current. 8. It is concluded that SP is excitatory to SPNs and that its synaptic release may initiate a slow EPSP which serves to augment impulse transmission through SPNs. Further, it appears that inhibitory interneurones may also be sensitive to SP and their activation may provide a negative feed‐back mechanism which can limit excessive excitation of SPNs by the peptide.This publication has 32 references indexed in Scilit:
- Excitation of lateral horn neurons of the neonatal rat spinal cord by 5-hydroxytryptamineDevelopmental Brain Research, 1986
- Vasopressin depolarizes lateral horn cells of the neonatal rat spinal cord in vitroBrain Research, 1985
- LH-RH analogue acts as substance P antagonist by inhibiting spinal cord vasomotor responsesBrain Research, 1985
- Light microscopic autoradiographic localization of [3H] substance P binding sites in rat thoracic spinal cordLife Sciences, 1984
- Effects of substance P and thyrotropin-releasing hormone on sympathetic preganglionic neurones in the upper thoracic intermediolateral nucleus of the catCanadian Journal of Physiology and Pharmacology, 1984
- Receptors for the excitatory amino acids in the mammalian central nervous systemProgress in Neurobiology, 1983
- Effects of substance P on sympathetic preganglionic neuronesNeuroscience Letters, 1983
- Substance P antagonist inhibits vasomotor responses elicited from ventral medulla in ratBrain Research, 1982
- Some characteristics of sympathetic preganglionic Neurones in the ratBrain Research, 1982
- The distribution of substance P immunoreactive fibers in the rat central nervous systemJournal of Comparative Neurology, 1978