S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver
Open Access
- 1 November 2006
- journal article
- Published by American Physiological Society in American Journal of Physiology-Gastrointestinal and Liver Physiology
- Vol. 291 (5) , G857-G867
- https://doi.org/10.1152/ajpgi.00044.2006
Abstract
An early event that occurs in response to alcohol consumption is mitochondrial dysfunction, which is evident in changes to the mitochondrial proteome, respiration defects, and mitochondrial DNA (mtDNA) damage. S-adenosylmethionine (SAM) has emerged as a potential therapeutic for treating alcoholic liver disease through mechanisms that appear to involve decreases in oxidative stress and proinflammatory cytokine production as well as the alleviation of steatosis. Because mitochondria are a source of reactive oxygen/nitrogen species and a target for oxidative damage, we tested the hypothesis that SAM treatment during alcohol exposure preserves organelle function. Mitochondria were isolated from livers of rats fed control and ethanol diets with and without SAM for 5 wk. Alcohol feeding caused a significant decrease in state 3 respiration and the respiratory control ratio, whereas SAM administration prevented these alcohol-mediated defects and preserved hepatic SAM levels. SAM treatment prevented alcohol-associated increases in mitochondrial superoxide production, mtDNA damage, and inducible nitric oxide synthase induction, without a significant lessening of steatosis. Accompanying these indexes of oxidant damage, SAM prevented alcohol-mediated losses in cytochrome c oxidase subunits as shown using blue native PAGE proteomics and immunoblot analysis, which resulted in partial preservation of complex IV activity. SAM treatment attenuated the upregulation of the mitochondrial stress chaperone prohibitin. Although SAM supplementation did not alleviate steatosis by itself, SAM prevented several key alcohol-mediated defects to the mitochondria genome and proteome that contribute to the bioenergetic defect in the liver after alcohol consumption. These findings reveal new molecular targets through which SAM may work to alleviate one critical component of alcohol-induced liver injury: mitochondria dysfunction.Keywords
This publication has 85 references indexed in Scilit:
- S -adenosylmethionine stabilizes cystathionine β-synthase and modulates redox capacityProceedings of the National Academy of Sciences, 2006
- Control of Mitochondrial Respiration by NO., Effects of Low Oxygen and Respiratory StateJournal of Biological Chemistry, 2003
- Chronic Alcohol Consumption Increases the Sensitivity of Rat Liver Mitochondrial Respiration to Inhibition by Nitric OxideHepatology, 2003
- Heat Shock Suppresses the Permeability Transition in Rat Liver MitochondriaJournal of Biological Chemistry, 2003
- S-Adenosylmethionine modulates inducible nitric oxide synthase gene expression in rat liver and isolated hepatocytesJournal of Hepatology, 2001
- Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteinsThe EMBO Journal, 2000
- S-Adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trialJournal of Hepatology, 1999
- Increased Oxidative Damage to Mitochondrial DNA Following Chronic Ethanol ConsumptionBiochemical and Biophysical Research Communications, 1997
- Chronic enteral ethanol treatment causes hypoxia in rat liver tissue in vivoHepatology, 1997
- Influence of backward perfusion on ursodeoxycholate-induced choleresis in isolated in situ rat liverJournal of Hepatology, 1990