Transition to Stochastic Synchronization in Spatially Extended Systems

Abstract
Spatially extended dynamical systems, namely coupled map lattices, driven by additive spatio-temporal noise are shown to exhibit stochastic synchronization. In analogy with low-dymensional systems, synchronization can be achieved only if the maximum Lyapunov exponent becomes negative for sufficiently large noise amplitude. Moreover, noise can suppress also the non-linear mechanism of information propagation, that may be present in the spatially extended system. A first example of phase transition is observed when both the linear and the non-linear mechanisms of information production disappear at the same critical value of the noise amplitude. The corresponding critical properties can be hardly identified numerically, but some general argument suggests that they could be ascribed to the Kardar-Parisi-Zhang universality class. Conversely, when the non-linear mechanism prevails on the linear one, another type of phase transition to stochastic synchronization occurs. This one is shown to belong to the universality class of directed percolation.

This publication has 0 references indexed in Scilit: