Abstract
Summary The relationship between acoustic myography (AMG), electromyography (EMG) and force during submaximal dynamic contractions was examined in the biceps brachii muscles of eight healthy males (aged 17–26 years). Different weights were lifted and lowered at a constant speed, using a wall pulley system, to perform concentric and eccentric contractions, respectively. Integrated AMG (iAMG) and integrated EMG (iEMG) activity both increased linearly with force during concentric (iAMGr=0.94; iEMGr=0.99) and eccentric (iAMGr=0.90; iEMGr=0.94) contractions. The slopes of the concentric regression lines were significantly different from the eccentric slopes (P<0.01) for both iAMG and iEMG with concentric contractions showing greater levels of activity. The results indicated that AMG can be used to detect changes in force during dynamic contractions which has important implications for the use of AMG in rehabilitation. The differences in iAMG activity between concentric and eccentric contractions are discussed in relationship to the origin of the AMG signal.