Inversion of reflection times in three dimensions

Abstract
When reflection data are available from a grid of crossing seismic lines, it is possible to construct normal incidence time maps from interpreted stacked sections and then apply three‐dimensional (3-D) ray‐tracing techniques following the normal‐incidence raypaths down to the various reflectors. The main disadvantage of this well‐known “time map migration” procedure is that interval velocities must be known a priori, and they must be estimated in advance by some approximate method. A technique is presented here which combines the above procedure with an inversion algorithm, providing direct calculations of interval velocities from the additional use of nonzero offset traveltime observations. A generalized linear inversion scheme is used, making possible a complete calculation of interval velocities and reflection interfaces, the latter represented by bicubic spline functions. To test the method in practice, we have applied it to (1) synthetic data generated from a constructed model, and (2) real data obtained from marine seismic sections. In the latter case, velocities and reflector depths obtained were compared to those obtained directly from a well log in the area. These results show a reasonably good resolution for layers that are not too deep relative to the shot/receiver offsets used. For deep and/or thin layers, the results are not satisfactory. This indicates the general limitation of seismic reflection data to resolve interval velocity, even in the presence of horizontally layered structure.

This publication has 0 references indexed in Scilit: