Targeting Angiogenic Processes by Combination Rofecoxib and Ionizing Radiation
- 1 October 2001
- journal article
- research article
- Published by Wolters Kluwer Health in American Journal of Clinical Oncology
- Vol. 24 (5) , 438-442
- https://doi.org/10.1097/00000421-200110000-00005
Abstract
Tumor growth and angiogenesis are interdependent. Cyclooxygenase (COX) catalyzes the synthesis of prostaglandins from arachidonic acid. Nonsteroidal antiinflammatory drugs (NSAIDs) inhibit COX-mediated synthesis of prostaglandins. COX-1 is constitutively expressed in a wide range of tissues, whereas COX-2 is cytokine inducible. Enhanced COX-2 expression has been attributed a key role in the development of inflammation and related processes observed in pathologically altered disease states. Two specific COX-2 inhibitors, namely rofecoxib (Vioxx) and celecoxib (Celebrex), both oral agents and U.S. Food and Drug Administration approved, have been shown preclinically and clinically to have efficacy comparable to that of NSAIDs for relief of pain and inflammation in osteoarthritis, with decreased risk of gastrointestinal damage. Little is known about how angiogenesis is affected by the combination of rofecoxib and radiation. We have evaluated the combination of rofecoxib, at various concentrations, and radiation on cytokine-induced angiogenesis in vitro. We have found that rofecoxib inhibited endothelial cell proliferation, migration, and tube formation (differentiation) at clinically relevant doses. In combination with radiation, inhibition of endothelial cell function further increased twofold. The combination of rofecoxib and radiation suggests a complementary strategy with clinical ramifications to target angiogenesis-dependent malignancies.Keywords
This publication has 6 references indexed in Scilit:
- Genes Expressed in Human Tumor EndotheliumScience, 2000
- Blood Vessel Formation: What Is Its Molecular Basis?Cell, 1996
- Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppressionNature Medicine, 1995
- Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinomaCell, 1994
- Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti‐cancer therapeutic agentsBioEssays, 1991
- The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35 degrees C yields basement membrane-like structures.The Journal of cell biology, 1989