Analysis of the mechanism of chloramphenicol acetyltransferase by steady-state kinetics. Evidence for a ternary-complex mechanism
- 1 October 1984
- journal article
- research article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 223 (1) , 211-220
- https://doi.org/10.1042/bj2230211
Abstract
The mechanism of the enzymic reaction responsible for chloramphenicol resistance in bacteria was examined by steady-state kinetic methods. The forward reaction catalysed by chloramphenicol acetyltransferase leads to inactivation of the antibiotic. Use of alternative acyl donors and acceptors, as well as the natural substrates, has yielded data that favour the view that the reaction proceeds to the formation of a ternary complex by a rapid-equilibrium mechanism wherein the addition of substrates may be random but a preference for acetyl-CoA as the leading substrate can be detected. Chloramphenicol and acetyl-CoA bind independently, but the correlation between directly determined and kinetically derived dissociation constants is imperfect because of an unreliable slope term in the rate equation. The reverse reaction, yielding acetyl-CoA and chloramphenicol, was studied in a coupled assay involving citrate synthase and malate dehydrogenase, and is best described by a rapid-equilibrium mechanism with random addition of substrates. The directly determined dissociation constant for CoA is in agreement with that derived from kinetic measurements under the assumption of an independent-sites model.This publication has 23 references indexed in Scilit:
- Re-evaluation of the kinetic mechanism of the choline acetyltransferase reaction.Journal of Biological Chemistry, 1977
- BINDING OF ACETYL-COA TO CHICKEN LIVER PYRUVATE-CARBOXYLASE1977
- Affinity and hydrophobic chromatography of three variants of chloramphenicol acetyltransferases specified by R factors in Escherichia coliFEBS Letters, 1976
- [57] Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteriaPublished by Elsevier ,1975
- The direct linear plot. A new graphical procedure for estimating enzyme kinetic parametersBiochemical Journal, 1974
- Induced Fit in Yeast HexokinaseEuropean Journal of Biochemistry, 1970
- Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis.1969
- On the catalytic mechanism of d-amino-acid oxidaseBiochimica et Biophysica Acta (BBA) - Enzymology, 1968
- The kinetics and mechanism of liver alcohol dehydrogenase with primary and secondary alcohols as substratesBiochemical Journal, 1966
- Enzymatic chlorampheicol acetylation and R factor induced antibiotic resistance in Enterobacteriaceae.1966