Abstract
Volcanism associated with the middle Proterozoic Gawler Range acid volcano‐plutonic province was initiated in the Kokatha area by the construction on Archaean basement of a large stratovolcano composed mainly of tholeiitic basalt and potassic basaltic‐andesite erupted possibly from a mantle‐derived ultramafic diapir. Crustal melting above the diapir generated acid magma, rich in silica and potassium, which rose by major block‐stoping to form a subvolcanic magma chamber. Leakage from this chamber during the premonitory caldera phase gave rise to small explosive and effusive eruptions around an incipient ring‐fracture zone. In the caldera phase, the eruption of voluminous rhyodacite to dacite ignimbrite from the subvolcanic magma chamber resulted in collapse of the roof partway through the eruption to form the Chandabooka caldera, 15 x 10 km across: the ignimbrite comprises a thick compound cooling unit, the Chandabooka Dacite, of which both the caldera and outflow facies are preserved. Resurgent doming and subsequent uplift of the caldera block by 1 km followed in the post‐caldera phase, accompanied by minor acidic volcanism. Flat‐roofed stocks of the primitive S‐type Hiltaba Granite and a major dyke swarm intruded the volcanic pile to complete the volcano‐plutonic episode.