Photobehaviour of Paramecium bursaria infected with different symbiotic and aposymbiotic species of Chlorella

Abstract
The endosymbiotic unit of Paramecium bursaria and Chlorella spec. shows two types of photobehaviour: 1) A step-up photophobic response which possibly depends on photosensitive agents in the ciliate cell itself — as is also shown by alga-free Paramecium bursaria - and can be drastically enhanced by photosynthetic activity of symbiotic algae; and 2) a step-down photophobic response. The step-down response leads to photoaccumulation of green paramecia. Both types of photobehaviour in Paramecium bursaria do not depend on any special kind of algal partners: The infection of alga-free Paramecium bursaria with different Chlorella species results in new ciliatealgae-associations. They are formed not only by combination of the original symbiotic algae with their host, but also by infection with other symbiotic or free-living (aposymbiotic) chlorellae, respecitively. Systems with other than the original algae are not permanently stable — algae are lost under stress conditions — but show the same types of photobehaviour. Photoaccumulation in general requires algal photosynthesis and occurs only with ciliates containing more than fifty algae/cell. It is not mediated by a chemotactic response to oxygen in the medium, since it occurs at light fluence rates not sufficient for a release of oxygen by the symbiotic system, e.g., below its photosynthetic compensation point. Photoresponses can be inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). Sensory transduction does not depend on any special symbiotic features of the algae, e.g., sugar excretion. The participation of oxygen in the Paramecium cell, of its cytoplasmic pH and of ions released or taken up by endosymbiotic algae in sensory transduction is discussed.

This publication has 17 references indexed in Scilit: