THE LYSOSOME PERIPHERY: BIOCHEMICAL AND ELECTROKINETIC PROPERTIES OF THE TRITOSOME SURFACE

Abstract
Normal rat liver lysosomes were isolated by the technique of loading with Triton WR-1339. Purity of the preparation was monitored with marker enzymes; a high enrichment in acid hydrolases was obtained in the tritosome fraction. In 0.0145 M NaCl, 4.5% sorbitol, 0.6 mM NaHCO3, pH 7.2 at 25°C the tritosomes had an electrophoretic mobility of -1.77 ± 0.02 µm/s/V/cm, a zeta potential of 23.2 mV, a surface charge of 1970 esu/cm2, and 33,000 electrons per particle surface assuming a tritosome diameter of 5 x 10-7 m. Treatment of the tritosomes with 50 µg neuraminidase/mg tritosome protein lowered the electrophoretic mobility of the tritosome to -1.23 ± 0.02 µm/s/V/cm under the same conditions and caused the release of 2.01 µg sialic acid/mg tritosome protein. Treatment of the tritosomes with hyaluronidase did not affect their electrophoretic mobility, while trypsin treatment elevated the net negative electrophoretic mobility of the tritosomes. Tritosome electrophoretic mobilities indicated a homogeneous tritosome population and varied greatly with ionic strength of the suspending media. pH vs. electrophoretic mobility curves indicated the tritosome periphery to contain an acid-dissociable group which likely represents the carboxyl group of N-acetylneuraminic acid; this was not conclusively proven, however, since the tritosomes lysed below a pH of 4 in the present system. Total tritosome carbohydrate (anthrone-positive material as glucose equivalents) was 0.19 mg/mg tritosome protein while total sialic acid was 3.8 µg (11.4 nmol)/mg tritosome protein.