The dissociation of chicken erythrocyte deoxyribonucleoprotein and some properties of its partial nucleoproteins

Abstract
Histones were completely dissociated from their native complex with DNA in 2.0m-sodium chloride. Histone fractions IIb, V and I were dissociated in 1.2m-sodium chloride, fractions V and I in 0.7m-sodium chloride and fraction I in 0.45m-sodium chloride. Repeated extraction of partial dRNP (deoxyribonucleoprotein) preparations with sodium chloride of the same concentration as that from which they were prepared resulted in release of histones that previously had remained associated with the DNA of the complex. Gradual removal of histones from dRNP was paralleled by an improvement in solubility, a decrease in wavelength of the u.v.-absorption minimum, and a fall in sedimentation coefficient of the remaining partial dRNP. X-ray diffraction patterns of partial dRNP preparations showed that removal of histone fractions I and V from dRNP did not destroy the super-coil structure of the dRNP, but further removal of histones did. Infrared spectra of partial dRNP preparations showed that in native dRNP histone fraction I was present in the form of extended, isolated polypeptide chains, and that the other histone fractions probably contain a helical component that lies roughly parallel to the polynucleotide chains in the double helix and an extended polypeptide component that is more nearly parallel to the DNA helix axis. An analysis of the sedimentation of partial dRNP preparations on sucrose gradients showed that native dRNP consists of DNA molecules each complexed with histone fractions of all types.