Coefficients of the Singularities for Elliptic Boundary Value Problems on Domains with Conical Points. III: Finite Element Methods on Polygonal Domains
- 1 February 1992
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Numerical Analysis
- Vol. 29 (1) , 136-155
- https://doi.org/10.1137/0729009
Abstract
In the two first parts of this work [RAIRO Modél. Math. Anal. Numér., 24 (1990), pp. 27é52], [RAIRO Modél. Math. Anal. Numér., 24 (1990), pp. 343–367] formulas giving the coefficients arising in the singular expansion of the solutions of elliptic boundary value problems on nonsmooth domains are investigated. Now, for the case of homogeneous strongly elliptic operators with constant coefficients on polygonal domains, the solution of such problems by the finite element method is considered. In order to approximate the solution or the coefficients, different methods are used based on the expressions of the coefficients that were obtained in the first two parts; the dual singular function method is also generalized.Keywords
This publication has 15 references indexed in Scilit:
- An Adapted Boundary Element Method for the Dirichlet Problem in Polygonal DomainsSIAM Journal on Numerical Analysis, 1991
- Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques. I : Résultats généraux pour le problème de DirichletESAIM: Mathematical Modelling and Numerical Analysis, 1990
- Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques. II : Quelques opérateurs particuliersESAIM: Mathematical Modelling and Numerical Analysis, 1990
- Error estimates on the coeficients obtained by the singular function methodNumerical Functional Analysis and Optimization, 1989
- Stationary Stokes and Navier–Stokes Systems on Two- or Three-Dimensional Domains with Corners. Part I. Linearized EquationsSIAM Journal on Mathematical Analysis, 1989
- On finite element methods for elliptic equations on domains with cornersComputing, 1982
- Mixed finite elements in ?3Numerische Mathematik, 1980
- On the use of singular functions with finite element approximationsJournal of Computational Physics, 1973
- A finite element scheme for domains with cornersNumerische Mathematik, 1972
- Triangular elements in the finite element methodMathematics of Computation, 1970