Thermal Stability of Horizontally Superposed Porous and Fluid Layers

Abstract
The results of stability analyses for the onset of convective motion are reported for the following three horizontally superposed systems of porous and fluid layers: (a) a porous layer sandwiched between two fluid layers with rigid top and bottom boundaries, (b) a fluid layer overlying a layer of porous medium, and (c) a fluid layer sandwiched between two porous layers. By changing the depth ratio dˆ from zero to infinity, a set of stability criteria (i.e., the critical Rayleigh number Rac and the critical wave number ac) is obtained, ranging from the case of a fluid layer between two rigid boundaries to the case of a porous layer between two impermeable boundaries. The effects of k/km (the thermal conductivity ratio), δ (the square root of the Darcy number), and α (the nondimensional proportionality constant in the slip condition) on Rac and ac are also examined in detail. The results in this paper, combined with those reported previously for Case (a) (Pillatsis et al., 1987), will provide a comprehensive picture of the interaction between a porous and a fluid layer.

This publication has 0 references indexed in Scilit: