Abstract
Post-larval specimens ofHirundichthys affinisare capable of jumping out of water, but the pectoral and pelvic fins are not extended when in air. Penetration through the air/ water interface demands a force to overcome surface tension which is similar in magnitude to the force required for the jump itself. However, post-larvae do not produce the single propulsive tail flick which powers the jump until most of the animal has passed through the interface. The post-larva emerges at an angle close to 45°, thus maximising the horizontal distance travelled before re-entry.Whether swimming slowly (4 body lengths s-1), or at maximum speed (36 body lengths s-1), post-larvae swim with the pectoral and pelvic fins extended. Calculations show that fast swimming post-larvae operate at Reynolds’ numbers of about 4×103, where surface roughness and projections decrease rather than increase drag.

This publication has 4 references indexed in Scilit: