Direct interaction of Na‐azide with the KATP channel
- 1 November 2000
- journal article
- Published by Wiley in British Journal of Pharmacology
- Vol. 131 (6) , 1105-1112
- https://doi.org/10.1038/sj.bjp.0703680
Abstract
1. The effects of the metabolic inhibitor sodium azide were tested on excised macropatches from Xenopus oocytes expressing cloned ATP-sensitive potassium (KATP) channels of the Kir6.2/SUR1 type. 2. In inside-out patches from oocytes expressing Kir6.2 delta C36 (a truncated form of Kir6.2 that expresses in the absence of SUR), intracellular Na-azide inhibited macroscopic currents with an IC50 of 11 mM. The inhibitory effect of Na-azide was mimicked by the same concentration of NaCl, but not by sucrose. 3. Na-azide and NaCl blocked Kir6.2/SUR1 currents with IC50 of 36 mM and 19 mM, respectively. Inhibition was abolished in the absence of intracellular Mg2+. In contrast, Kir6.2 delta C36 currents were inhibited by Na-azide both in the presence or absence of intracellular Mg2+. 4. Kir6.2/SUR1 currents were less sensitive to 3 mM Na-azide in the presence of MgATP. This apparent reduction in sensitivity is caused by a small activatory effect of Na-azide conferred by SUR. 5. We conclude that, in addition to its well-established inhibitory effect on cellular metabolism, which leads to activation of KATP channels in intact cells, intracellular Na-azide has direct effects on the KATP channel. Inhibition is intrinsic to Kir6.2, is mediated by Na+, and is modulated by SUR. There is also a small, ATP-dependent, stimulatory effect of Na-azide mediated by the SUR subunit. The direct effects of 3 mM Na-azide on KATP channels are negligible in comparison to the metabolic activation produced by the same Na-azide concentration.Keywords
This publication has 39 references indexed in Scilit:
- Involvement of the N‐terminus of Kir6.2 in the inhibition of the KATP channel by ATPThe Journal of Physiology, 1999
- MgATP activates the β cell K ATP channel by interaction with its SUR1 subunitProceedings of the National Academy of Sciences, 1998
- KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situThe Journal of Physiology, 1998
- Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptorNature, 1997
- Adenosine Diphosphate as an Intracellular Regulator of Insulin SecretionScience, 1996
- A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ ChannelsPublished by Elsevier ,1996
- Cloning and functional expression of the cDNA encoding a novel ATP‐sensitive potassium channel subunit expressed in pancreatic β‐cells, brain, heart and skeletal muscleFEBS Letters, 1995
- Reconstitution of I KATP : An Inward Rectifier Subunit Plus the Sulfonylurea ReceptorScience, 1995
- The First Nucleotide Binding Fold of the Cystic Fibrosis Transmembrane Conductance Regulator Can Function as an Active ATPaseJournal of Biological Chemistry, 1995
- The sulfonylurea receptorBiochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1992