Does vertical disparity scale the perception of stereoscopic depth?

Abstract
It has been suggested that a measure of the gradients of vertical disparity over a surface may scale the mapping between horizontal disparity and perceived depth. We have investigated this possibility by obtaining estimates of the depth within stereograms that simulated two apposed fronto-parallel planes placed at different distances from an observer. The gradients of vertical disparity in a stereogram were set to simulate those appropriate to a viewing distance of 12.5 cm, 25 cm, 50 cm or 100 cm, whereas the distance specified by vergence and accommodative cues was always fixed at 50 cm. Judgements of the perceived depth between the two planes were uninfluenced by changes in the gradients of vertical disparity. It thus seems that the human visual system does not employ vertical disparity as a scaling parameter in stereoscopic depth judgements.