The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to Gq, Gi and G12 proteins

Abstract
Neuropeptides like galanin produced and released by small cell lung cancer (SCLC) cells are considered principal mitogens in these tumors. We identified the galanin receptor type 2 (GALR2) as the only galanin receptor expressed in H69 and H510 cells. Photoaffinity labeling of G proteins in H69 cell membranes revealed that GALR2 activates G proteins of three subfamilies: Gq, Gi, and G12. In H69 cells, galanin-induced Ca2+ mobilization was pertussis toxin-insensitive. While phorbol ester-induced extracellular signal-regulated kinase (ERK) activation required protein kinase C (PKC) activity, preincubation of H69 cells with the PKC-inhibitor GF109203X had no effect on galanin-dependent ERK activity. A rise of the intracellular calcium concentration was necessary and sufficient to mediate galanin-induced ERK activation. In support of Gi coupling, stimulation of GALR2 expressed in HEK293 cells inhibited isoproterenol-induced cAMP accumulation and raised cAMP levels in COS-7 cells when coexpressed with a chimeric GαS-Gαi protein. In H69 cells, galanin activated the monomeric GTPase RhoA and induced stress fiber formation in Swiss 3T3 cells expressing GALR2. Thus, we provide the first direct evidence that in SCLC the mitogenic neuropeptide galanin, interacting with GALR2, simultaneously activates multiple classes of G proteins and signals through the Gq phospholipase C/calcium sequence and a G12/Rho pathway.