One-sided trimming in small samples with asymmetric contamination

Abstract
An estimator for location, given a sample of only four or five observations, is proposed. The underlying distribution on of the sample may (with probability p) be contaminated by an outlier from a rightly-skewed distribution. The estimator minimizes the maximum mean squared error over all values of p. In fact, there exists an estimator which is unbiased in both the outlier - free and extreme-outlier cases, but its mean square error is substantially higher than the mean squared error for the minimax estimator. Mean squared errors for various underlying distributional situations are calculated and compared with those of other location estimators such as the mean and the median.

This publication has 7 references indexed in Scilit: