Superposition principles for matrix Riccati equations

Abstract
A superposition rule is obtained for the matrix Riccati equation (MRE) Ẇ=A+WB+CW+WDW [where W(t), A(t), B(t), C(t), and D(t) are real n×n matrices], expressing the general solution in terms of five known solutions for all n≥2. The symplectic MRE (W=WT, A=AT, D=DT, C=BT) is treated separately, and a superposition rule is derived involving only four known solutions. For the ‘‘unitary’’ and GL(n,R) subcases (with D=A and C=BT, or D=−A and C=BT, respectively), superposition rules are obtained involving only two solutions. The derivation of these results is based upon an interpretation of the MRE in terms of the action of the groups SL(2n,R), SP(2n,R), U(n), and GL(n,R) on the Grassman manifold Gn(R2n).