An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes.
Open Access
- 1 December 1986
- journal article
- research article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 88 (6) , 697-718
- https://doi.org/10.1085/jgp.88.6.697
Abstract
For a large smooth particle with charges at the surface, the electrophoretic mobility is proportional to the zeta potential, which is related to the charge density by the Gouy-Chapman theory of the diffuse double layer. This classical model adequately describes the dependence of the electrophoretic mobility of phospholipid vesicles on charge density and salt concentration, but it is not applicable to most biological cells, for which new theoretical models have been developed. We tested these new models experimentally by measuring the effect of UO2++ on the electrophoretic mobility of model membranes and human erythrocytes in 0.15 M NaCl at pH 5. We used UO2++ for these studies because it should adsorb specifically to the bilayer surface of the erythrocyte and should not change the density of fixed charges in the glycocalyx. Our experiments demonstrate that it forms high-affinity complexes with the phosphate groups of several phospholipids in a bilayer but does not bind significantly to sialic acid residues. As observed previously, UO2++ adsorbs strongly to egg phosphatidylcholine (PC) vesicles: 0.1 mM UO2++ changes the zeta potential of PC vesicles from 0 to +40 mV. It also has a large effect on the electrophoretic mobility of vesicles formed from mixtures of PC and the negative phospholipid phosphatidylserine (PS): 0.1 mM UO2++ changes the zeta potential of PC/PS vesicles (10 mol % PS) from -13 to +37 mV. In contrast, UO2++ has only a small effect on the electrophoretic mobility of either vesicles formed from mixtures of PC and the negative ganglioside GM1 or erythrocytes: 0.1 mM UO2++ changes the apparent zeta potential of PC/GM1 vesicles (17 mol % GM1) from -11 to +5 mV and the apparent zeta potential of erythrocytes from -12 to -4 mV. The new theoretical models suggest why UO2++ has a small effect on PC/GM1 vesicles and erythrocytes. First, large groups (e.g., sugar moieties) protruding from the surface of the PC/GM1 vesicles and erythrocytes exert hydrodynamic drag. Second, charges at the surface of a particle (e.g., adsorbed UO2++) exert a smaller effect on the mobility than charges located some distance from the surface (e.g., sialic acid residues).This publication has 34 references indexed in Scilit:
- Determination of the electric potential at the external and internal bilayer-aqueous interfaces of the human erythrocyte membrane using spin probesBiochimica et Biophysica Acta (BBA) - Biomembranes, 1983
- The electric potential profile across the erythrocyte membraneJournal of Theoretical Biology, 1982
- Lack of transbilayer coupling in phase transitions of phosphatidylcholine vesiclesBiochemistry, 1982
- Topology and dynamics of phospholipids in membranesFEBS Letters, 1981
- Membrane asymmetry A survey and critical appraisal of the methodology II. Methods for assessing the unequal distribution of lipidsBiochimica et Biophysica Acta (BBA) - Biomembranes, 1980
- A simple method for the preparation of homogeneous phospholipid vesiclesBiochemistry, 1977
- Iron chelation in cell cultures by two conjugates of 2, 3 - dihydroxybenzoic acid (2, 3 - DHB)Biochemical and Biophysical Research Communications, 1977
- The interaction of paramagnetic ions and spin labels with lecithin bilayersBiochimica et Biophysica Acta (BBA) - Biomembranes, 1973
- Divalent Ions and the Surface Potential of Charged Phospholipid MembranesThe Journal of general physiology, 1971
- The surface charge of cells and some other small particles as indicated by electrophoresisBiochimica et Biophysica Acta, 1961