Design and calibration of the GOES-8 solar x-ray sensor: the XRS

Abstract
The GOES-8 solar x-ray sensor (XRS) detects solar x-rays in two wavelength bands of approximately 0.5 to 3 angstrom and 1 to 8 angstrom. The XRS uses a dual ion chamber design with beryllium windows and Xenon or Argon gas fills to provide the x-ray detection, and which determine the wavelength response functions. GOES spacecraft before GOES-8 were spinning, and the previous XRS design used this property to measure the solar x-rays as a 'pulse' above the ambient particle background during the time when the XRS FOV scanned across the sun. GOES-8 and later spacecraft are three-axis stabilized, and the XRS now views the sun constantly from a mount on the solar panel yoke. This puts a severe requirement on the XRS for shielding of the ion chamber, since the background current form ambient particles must be will below the current from the design threshold x-ray fluxes. The design and calibration of the XRS is described, as are results from electron irradiation which were used to verify the immunity to ambient particle fluxes.

This publication has 0 references indexed in Scilit: