Abstract
A complete finite element-eigenmode method is applied to analyze the performance of a 1-3-type transducer under actual working conditions. The effect of fluid loading, internal losses, driving impedance, and microstructure variation are all taken into account. Via the finite element analysis, the constitutive equations for a piezoelectric material are discretized into a set of algebraic equations. The fluid loading is considered as an exciting force acting on the transducer surface. On the basis of the analysis, the resonance spectrum and electrical admittance spectrum are calculated with the condition of constant D-field. The proposed method provides an efficient way of designing a 1-3-type transducer. Preliminary calculations were made for the purpose of verification, and results show good agreement.

This publication has 7 references indexed in Scilit: