Linear Heisenberg Model of Ferro- and Antiferromagnetism
- 1 August 1964
- journal article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 5 (8) , 1091-1106
- https://doi.org/10.1063/1.1704213
Abstract
The partition function of the one-dimensional Heisenberg model is considered. Hamiltonian of the system H=−12 ∑ [J⊥(σlxσl+1x+σlyσl+1y)+J∥σlzσl+1z]−mH ∑ σlzis expressed in terms of Fermi operators. The term which contains J∥, the quartic term and a part of quadratic term in Fermi operators, have been regarded as perturbation, keeping the symmetry with respect to the magnetic field. Linked-cluster expansion in an appropriate form for this case has been developed and the partition function has been obtained up to the third order in J∥. Numerical values of energy, specific heat, and susceptibility up to second order in J∥ are shown. The ground-state energy is EN|J⊥|=−2π−2π2(J∥|J⊥|)−16π3(16−π2144)(J∥J⊥)2+O[(J∥J⊥)3].E/N|J∥| for the antiferromagnetic case J∥ = −|J∥| = J is −0.8899. Agreement with the exact value, −0.8863, is quite satisfactory.Keywords
This publication has 28 references indexed in Scilit:
- Magnetic Susceptibility of Cu ·2.5O at Low TemperaturePhysical Review B, 1963
- Thermal and magnetic properties of CuSO4.5H2O and CuSeO4.5H2O below 1°KPhysica, 1962
- Specific heat of Cu(NH3)4SO4.H2O below 1°KPhysica, 1961
- Un développement du potentiel de Gibbs d'un système composé d'un grand nombre de particules (II)Nuclear Physics, 1959
- Un développement du potentiel de gibbs d'un système quantique composé d'un grand nombre de particulesNuclear Physics, 1958
- Perturbation theory of large quantum systemsPhysica, 1957
- Zur Statistik der SpinwellenThe European Physical Journal A, 1956
- The lowest energy state of a linear antiferromagnetic chainPhysica, 1952
- Zur Theorie der MetalleThe European Physical Journal A, 1931
- Zur Theorie des FerromagnetismusThe European Physical Journal A, 1930