A simple device using magnetic transportation for droplet-based PCR
- 16 May 2007
- journal article
- Published by Springer Nature in Biomedical Microdevices
- Vol. 9 (5) , 695-702
- https://doi.org/10.1007/s10544-007-9078-y
Abstract
The Polymerase chain reaction (PCR) was successfully and rapidly performed in a simple reaction device devoid of channels, pumps, valves, or other control elements used in conventional lab-on-a-chip technology. The basic concept of this device is the transportation of aqueous droplets containing hydrophilic magnetic beads in a flat-bottomed, tray-type reactor filled with silicone oil. The whole droplets sink to the bottom of the reactor because their specific gravity is greater than that of the silicone oil used here. The droplets follow the movement of a magnet located underneath the reactor. The notable advantage of the droplet-based PCR is the ability to switch rapidly the proposed reaction temperature by moving the droplets to the required temperature zones in the temperature gradient. The droplet-based reciprocative thermal cycling was performed by moving the droplets composed of PCR reaction mixture to the designated temperature zones on a linear temperature gradient from 50°C to 94°C generated on the flat bottom plate of the tray reactor. Using human-derived DNA containing the mitochondria genes as the amplification targets, the droplet-based PCR with magnetic reciprocative thermal cycling successfully provided the five PCR products ranging from 126 to 1,219 bp in 11 min with 30 cycles. More remarkably, the human genomic gene amplification targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was accomplished rapidly in 3.6 min with 40 cycles.Keywords
This publication has 18 references indexed in Scilit:
- Automated Microdroplet Platform for Sample Manipulation and Polymerase Chain ReactionAnalytical Chemistry, 2006
- Technology for Automated, Rapid, and Quantitative PCR or Reverse Transcription-PCR Clinical TestingClinical Chemistry, 2005
- Rapid PCR in a continuous flow deviceLab on a Chip, 2004
- Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic fieldApplied Physics Letters, 2003
- Integrating Polymerase Chain Reaction, Valving, and Electrophoresis in a Plastic Device for Bacterial DetectionAnalytical Chemistry, 2003
- DNA Amplification and Hybridization Assays in Integrated Plastic Monolithic DevicesAnalytical Chemistry, 2002
- Development of A Microchamber Array for Picoliter PCRAnalytical Chemistry, 2000
- Chemical Amplification: Continuous-Flow PCR on a ChipScience, 1998
- Primer-directed enzymatic amplification of DNA with a thermostable DNA polymeraseScience, 1988
- [21] Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reactionPublished by Elsevier ,1987