Solving mathematical programs with complementarity constraints as nonlinear programs

Abstract
We consider solving mathematical programs with complementarity constraints (MPCCs) as nonlinear programs (NLPs) using standard NLP solvers. This approach is appealing because it allows existing off-the-shelf NLP solvers to tackle large instances of MPCCs. Numerical experience on MacMPEC, a large collection of MPCC test problems is presented. Our experience indicates that sequential quadratic programming (SQP) methods are very well suited for solving MPCCs and at present outperform interior-point solvers both in terms of speed and reliability. All NLP solvers also compare very favorably to special MPCC solvers on tests published in the literature.