Stability of Chloroplastic Triazine Resistance in Rutabaga Backcross Generations

Abstract
Triazine resistance originally observed in a weed biotype of birdsrape (Brassica campestris L.) has been transferred through cytoplasmic substitution into rutabaga (Brassica napus ssp. rapifera [Metzg.] Minsk.) by conventional backcrossing. Photosynthetic function and resistance to triazines were examined in six backcross generations of rutabaga as well as in the original parents. Chloroplast thylakoid membranes were isolated and their sensitivity to atrazine, metribuzin, and diuron assayed by measuring the inhibition of photoreduction of 1,6-dichlorophenol indophenol as well as the alteration of in vitro chlorophyll fluorescence rise characteristics. Both assay methods indicated that triazine resistance persisted in all rutabaga backcross generations, and that it involved triazine binding sites in chloroplasts. There was little resistance to diuron. In vivo chlorophyll fluorescence was also monitored, in the absence of herbicides, as an indicator of the electron transfer properties of the chloroplast photosystem II complex. The results indicated that electron transport from QA to QB was slower (as indicated by a larger intermediate level fluorescence during the transient rise) in the triazine resistant parents as well as in all the rutabaga backcross generations.