A New Method for Solving the Boltzmann Equation for Electrons in Crystals
- 1 July 1971
- journal article
- research article
- Published by Wiley in Physica Status Solidi (b)
- Vol. 46 (1) , 137-150
- https://doi.org/10.1002/pssb.2220460112
Abstract
A new method for solving the linearized Boltzmann equation, based on the combination of Fourier and degenerate kernel techniques, is developed. It permits to reduce the transport problem for electrons in crystals with arbitrary energy surfaces to a system of linear equations for scattering both by phonons in metals and by localized defects. The transport coefficients, in the absence or presence of magnetic fields of all strengths of practical interest, may be expressed in terms of the solutions of the system of linear equations and quantities characterizing the energy bands of the crystal.Keywords
This publication has 15 references indexed in Scilit:
- Galvanomagnetic Effects of Metals due to Inelastic and Simultaneous Elastic ScatteringPhysica Status Solidi (b), 1971
- Lokalisierte Funktionen als Verallgemeinerung der Wannier‐Funktionen im VielbandfallPhysica Status Solidi (b), 1971
- The asymptotic behaviour of wannier functionsPhysica Status Solidi (b), 1971
- Elektronen‐störpotential inhomogen verzerrter kristallgitterPhysica Status Solidi (b), 1971
- The Fermi surfaces of the noble metalsPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969
- Magnetoresistivity of Metals I. General TheoryPhysica Status Solidi (b), 1967
- Der Einfluß von Gitterfehlern auf den elektrischen Widerstand und die Thermokraft von MetallenThe European Physical Journal A, 1966
- Theorie elektromagnetischer Wellen in Metallen und ihrer Wechselwirkung mit Ultraschallwellen (I)Physica Status Solidi (b), 1966
- The boltzmann equations in electron-phonon systemsProceedings of the Physical Society, 1964
- The Fermi surfaces of copper, silver and gold. II. Calculation of the Fermi surfacesPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1962