Molecular design for stabilization of chemical amplification resist toward airborne contamination

Abstract
This paper describes the first logical approach to the design of chemical amplification resists that are stable toward airborne contamination. This molecular design is based on the observation that uptake of N-methylpyrrolidone (NMP) by thin polymer films is primarily governed by glass transition temperatures (Tg) of the polymers. This concept has led to the design of environmentally very robust chemical amplification resists that provide positive images upon development with aqueous base.

This publication has 0 references indexed in Scilit: