Photopyroelectric measurement of thermal conductivity of metallic powders

Abstract
The effective thermal diffusivity of metal powders in air at room temperature is measured by the photopyroelectric technique. The thermal conductivity is calculated from the diffusivity, the relative density, and the specific heat obtained from literature. Maxwell’s model is a good prediction but underestimates the measured effective thermal conductivity, especially for irregular particles. Due to the large difference between the thermal conductivity of metals and air, the effective conductivity is mainly determined by the relative density of the powder bed but not by the properties of the powder material. A theoretical model showing the influence of grain size and gas pressure is presented. The dependence on the particles’ size and pressure is explained by the gradual transition from the free molecular to conductive mechanism of heat transfer in gaps between particles. The theory gives a precise estimation of effective thermal conductivity for metallic powders with a narrow size distribution of spherical particles and it underestimates this value in the case of a wide size distribution or in the case of irregular particles.

This publication has 20 references indexed in Scilit: