The temporal growth and decay of the auditory motion aftereffect

Abstract
The present work investigated the temporal tuning of the auditory motion aftereffect (aMAE) by measuring the time course of adaptation and recovery to auditory motion exposure. On every trial, listeners were first exposed to a broadband, horizontally moving sound source for either 1 or 5 seconds, then presented moving test stimuli after delays of 0, 23, or 123seconds. All stimuli were synthesized from head related transfer functions recorded for each participant. One second of motion exposure (i.e., a single pass of the moving source) produced clearly measurable aMAEs which generally decayed monotonically after adaptation ended, while five seconds exposure produced stronger aftereffects that remained largely unattenuated across test delays. These differences may imply two components to the aMAE: a short time-constant motion illusion and a longer time-constant response bias. Finally, aftereffects were produced only by adaptor movement toward but not away from listener midline. This aftereffect asymmetry may also be a consequence of brief adaptation times and reflect initial neural response to auditory motion in primate auditory cortex.