Pull-out Strength of Caspar Cervical Screws

Abstract
Anterior cervical instrumentation as an adjunct to bone fusion has an important role in cervical spine surgery. Posterior vertebral body cortex purchase is strongly recommended in the use of the Caspar system, although few biomechanical data exist to validate this requirement. In this study, Caspar screws were placed in 43 human cadaveric cervical vertebral bodies, either putting them into the posterior vertebral cortex as identified radiographically or penetrating it by 2 mm as recommended in the literature. Pull-out tests were conducted with tension applied to a connected plate at 0.25 mm/s, and force-deformation data were obtained. Failure typically occurred with clean pull-out; in most instances, cancellous bone remained attached to screw threads. Mean load without posterior cortical purchase was 375 +/- 53 N; with penetration it was 411 +/- 70 N. These differences were nonsignificant. Average deformation to failure was 1.41 +/- 0.10 mm in the group without posterior cortical penetration. In the posterior penetration group, mean deformation was 1.56 +/- 0.16 mm. Again, differences were not significant. Posterior cortical penetration does not improve the pull-out strength of Caspar screws in an isolated vertebral body model, but other biomechanical studies need to be done before insertion methods are altered.