Large-scale structure in the mixing layer of a round jet
- 13 December 1978
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 89 (3) , 413-432
- https://doi.org/10.1017/s0022112078002670
Abstract
Late transitional and turbulent flows in the mixing-layer region of a round jet are investigated for a range of Reynolds numbers by using flow-visualization and hotwire techniques. Attention is focused on the vortices in the transition region and the large eddies in the turbulent region. The interaction and coalescence of vortex rings in the transition region are described. The transition region is characterized by a growth of three-dimensional flow due to a wave instability of the cores of the vortex rings. The merging of these distorted vortices produces large eddies which can remain coherent up to the end of the potential-core region of the jet. A conditional sampling technique is used to measure eddies moving near the jet centre-line. These eddies differ significantly from the ring vortices as they are three-dimensional and contain irregular small-scale turbulence. However, when averaged, their structure is similar in cross-section to that of a vortex ring. These sampled eddies contribute greatly to local velocity fluctuations and statistical correlations. The experiments indicate a need for careful consideration of the meanings of terms such as ‘vortex’, ‘eddy’ and ‘turbulent flow’. In particular care must be taken to discriminate between the orderly, easily visualized, vortices in the transition regions of free shear flows and the less clearly visualized, but strong, large eddies in the fully developed turbulent regions.Keywords
This publication has 1 reference indexed in Scilit:
- Progress and Problems in Understanding Turbulent Shear FlowsPublished by Springer Nature ,1975